• matlag@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    17
    arrow-down
    3
    ·
    1 年前

    Nuclear plants consist mainly of a shitton of concrete (and only the best sort is good enough). The production of that concrete causes a terrible amount of carbon emissions upfront.

    Actually, if you compare them to solar or wind at equivalent service, it’s not that straightforward:

    Renewables installed capacity is nowhere close to their actual production, nuclear can produce its nominal capacity in a very steady way.

    Wind turbines also need a lot of concrete, and much more metal for equivalent output. Solar panels need a lot of metals.

    Renewables need a backup source to manage their intermittency. It’s most often batteries and fossil plants these days. I don’t think I need to comment on fossil plants, but batteries production also has a very significant carbon emission budget, and is most often not included in comparisons. Besides, you need to charge the batteries, that’s even more capacity required to get on par with the nuclear plant.

    With all of these in consideration, IPCC includes nuclear power along with solar and wind as a way to reduce energy emissions.

    • barsoap@lemm.ee
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      1
      ·
      1 年前

      If you use lithium batteries, sure, but grid-scale solutions are definitely moving away from that, the only reason Lithium ever really showed up in the grid is because car manufacturers built up lithium capacity, it wouldn’t have happened without that. Lithium itself I think won’t be an issue for long, plenty of abundant repositories have been found and we haven’t even really started recycling, cobalt now that’s a completely different topic.

      Main difference is that you really don’t need energy density if you don’t lob the batteries around all the time so flow batteries, sodium-ion, molten salt, whatnot, are very enticing options. For spikes and frequency regulation there’s good ole flywheels (which came for free with all those glorified steam engines burning fossil fuels and uranium). Also around here we’re using Scandinavian hydrodams as storage for our wind, granted not everyone has them as neighbours.

      A bit further down the line power-to-X will also be an important factor in backup and seasonal storage: We’ll need various hydrogen/hydrocarbon compounds anyway as feed stock, for steel smelting etc. so production capacity to soak up renewable overproduction will be available. Which side note is also the reason people should stop with the “hydrogen is dirty” argument: What the fuck else are you going to smelt steel with. Right now hydrogen smelters are going to use fossil hydrogen, yes, but that’s pretty much the only way to build up enough demand so that green hydrogen production gets investment.

    • oyo@lemm.ee
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      2
      ·
      1 年前

      Solar plus batteries are already cheaper than nuclear, and only going down. Nuclear has always gotten more expensive over time. For the cost of the most recently completed nuclear plant in the US they could have built 12 times the nameplate capacity worth of solar with 24 hours of battery backup. (A totally unnecessary amount of dispatchability.)

      Solar and batteries easily “pay” for their manufacturing carbon emissions within 1-2 years max (as does nuclear). This payback period only goes down as the grid gets greener.