• CanadaPlus
    link
    fedilink
    English
    arrow-up
    21
    arrow-down
    7
    ·
    edit-2
    1 year ago

    I mean, no. That’s not enough energy to cause nuclear stuff. This guy tried sciencing, which I still respect in the context of a goofy scenario, I guess.

    • thebestaquaman@lemmy.world
      link
      fedilink
      arrow-up
      16
      ·
      1 year ago

      The math actually says that we might quite possibly get nuclear stuff. I checked because at first I intuitively thought the same thing as you.

      • CanadaPlus
        link
        fedilink
        English
        arrow-up
        5
        arrow-down
        1
        ·
        edit-2
        1 year ago

        Wouldn’t that mean opening an evacuated tube should produce a flash of radiation, and supersonic planes should absolutely glow? I’m skeptical.

        • Smokeydope@lemmy.world
          link
          fedilink
          English
          arrow-up
          11
          ·
          edit-2
          1 year ago

          Air moves as fast as the potential difference in pressure between where it is and where it wants to go. Also pressure has a direct relationship with heat as in the more under pressure a volume of air is the more hot it becomes.

          The potential difference between regular earth or spaceship atmospheric pressure and vaccum is relatively little so air flow is only subsonic when evacuated vaccum tubes break and exposed to normal atmosphere conditions.

          However if you go to the bottom of the ocean the pressure there is enough to cause implosions which create a kind of under water sonic boom as well as light radiation as the water rushes in to the vaccum faster than the speed of sound. The mantis shrimp even evolved this as a kind of defense by snapping its claws so fast it creates vaccum bubbles that implode which creates powerful shockwaves while producing light. Here’s a great video about that

          I dont know enough about aerodynamics to know about why supersonic planes dont glow. Maybe they do and its just in infrared. Hopefully someone else can chime in.

          Still that’s almost nothing compared to the pressures created around the body in this scenario which as the person calculated is surface-of-the-sun levels of pressure being instantly pushed on earthy atmosphere molecules. The forces created by the potential difference in pressure in this scenario could theoretically be enough to overcome the strong nuclear force binding the nucleus of air atoms.

          • indepndnt@lemmy.world
            link
            fedilink
            arrow-up
            2
            ·
            1 year ago

            The difference I see with supersonic jets is that our hypothetical scenario is all about an instantaneous occurrence, whereas jets start at a standstill and accelerate up to that speed relatively gradually, meaning there is some opportunity for air displacement to begin before the jet arrives and occur over some marginally longer time period.

          • CanadaPlus
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            Oh, so you’re assuming all the air is instantly pushed to the person’s skin? Yeah, that could do it. Actually, if the stuff is pushed arbitrarily close together you get black holes. I read OP as the destination air gets moved out more evenly, and just the vacuum remains.

            Supersonic planes do get hot, because the air basically heats until the flow is subsonic again, so they would glow in the infrared a bit. Normal atmospheric pressure, as you noted, isn’t enough to make anything nuclear or even chemical happen.

    • nomecks@lemmy.world
      link
      fedilink
      arrow-up
      7
      arrow-down
      1
      ·
      1 year ago

      Your atoms now occupy the same space as the air atoms. How exactly is this not going to result in nuclear tomfoolery?

      • CanadaPlus
        link
        fedilink
        English
        arrow-up
        4
        ·
        1 year ago

        That might do it, if they really land on top of each other. OP said it was air molecules colliding with each other in the shock, though.

      • Mac@mander.xyz
        link
        fedilink
        arrow-up
        3
        arrow-down
        1
        ·
        1 year ago

        Depends on what teleportation technology we’re using. I think a lot of us assume that when you’re teleported you’re quickly assembled atom by atom and don’t simply instantly exist in a new location.

        • CanadaPlus
          link
          fedilink
          English
          arrow-up
          3
          ·
          1 year ago

          There’s a few questions here. At the atomic level, quantum mechanics comes into play, and instant change basically breaks it, so you’d expect it to be slightly gradual somehow.