A high tech supercritical carbon dioxide power plant is taking shape behind the walls of a modest building in Texas, with the potential to lower the cost of concentrating solar power systems.
Supercritical C02 turbines are fuel agnostic, but the really interesting development here is using them in conjunction with concentrated solar power systems. Power cycles based on a sCO2 working fluid have the potential for higher thermal efficiencies and a lower capital cost when compared to state-of-the-art steam-based power cycles.
Concentrated solar power has long taken a back seat to photovoltaics as the dominant means of generating solar power, but maybe it’s about to have a renaissance. Australia’s National Science Agency CSIRO, says it has made a key breakthrough with concentrated solar thermal technology (CST) that could see it act as grid storage batteries.
Supercritical C02 turbines are fuel agnostic, but the really interesting development here is using them in conjunction with concentrated solar power systems. Power cycles based on a sCO2 working fluid have the potential for higher thermal efficiencies and a lower capital cost when compared to state-of-the-art steam-based power cycles.
Concentrated solar power has long taken a back seat to photovoltaics as the dominant means of generating solar power, but maybe it’s about to have a renaissance. Australia’s National Science Agency CSIRO, says it has made a key breakthrough with concentrated solar thermal technology (CST) that could see it act as grid storage batteries.