Net loss of energy and regenerative breaking easier and more efficient to implement.
This is going to sound offensive, but this is why basic physics knowledge is important. Or you’re a troll and the downvotes are deserved, but let’s go uneducated first.
Are you saying it’s impossible to engineer vehicles to capture wind power into a turbine to increase battery power?
Sorry, but, you’ll need to explain step by step… Why vehicles can’t be equipped with air capture devices that funnel wind power into a turbine that feeds that battery.
Earth has many “wind farms”.
Why can’t that concept be scaled down to get wind power from a vehicle?
BTW, ELI5… because, obviously I’m too stupid to understand the details.
You can, but the energy gained from the turbine will be less than the extra energy it takes to drive the vehicle now that there is a wind turbine attached.
You proposed it in the grill, but for simplicity let’s put a wind turbine on the roof. To turn the blades, the wind needs to exert a force on them, and for the blades to not fly off the back of the vehicle, the vehicle needs to match that force. So now the vehicle is working harder to move forward.
It may be easier to visualize if you think of the turbine like a parachute. Once the car is up to speed, you release the turbine out of the back attached by a string. It will spin in the wind, and twist the string, but the car will slow down.
You could put this into the grill, or some part of the vehicle and fool yourself that it’s not added force, but cars are designed for wind to go around them, not for wind to push on them. So no matter how you add a turbine, it’s added wind resistance.
If a system gets a bump in energy output vs the energy put into it you end up with a perpetual motion machine. The law of conservation of energy stops that. Add on top of that friction and vibrational losses before converting the kinetic energy to electricity you will end up causing more drag than the amount of energy generated can offset.
The same reason they don’t drag an extra wheel behind them with a generator. The extra drag from whatever you use to charge the battery will use more energy than the generator can put back into the battery. It’s a net loss.
Because no process is 100% efficient in the real world. You would lose more energy due to friction than you would gain. This would negatively affect you driving range.
Also I don’t know why everyone is so upset. I had to put some thought into this one and I have a few engineering and physics classes under my belt.
I concur with this. Also why not have something similar. Turbines in sewers and waterways. We have the ability to be 100% powered by electricity. Batteries are our bottleneck
I assume it’s cost. You’ll get pica amounts of charge. So it’s not Worth it. When you can just cover every roof with solar. Enough wind turbines, water way turbines, bio plants and geothermal.
So, you’re saying… Fuck off with every minute possible option that creates energy?
You really think the multi millions of flushed toilets couldn’t produce any relevant energy? Isn’t that a failure of physics and engineering versus humanity?
Average toilet flush is 5 litres which weighs about 5kg. The amount of potential energy depends on the height difference between the source and the turbine. If it’s right in the toilet you maybe have a meter of height, so you could potentially generate 5 kg * 9.81m/s^2 * 1 m = 49 Joules of energy from a single toilet flush. The average house uses about 1000kWH of energy every month, which is 3.6 billion joules. If you could capture the energy with 100% efficiency you would need about 73.5 million toilet flushes to recuperate the amount of energy for one household in a month. If each toilet is used 10 times a day you would need 7.35 million of these devices. If they cost $1 each this would be a $7.35 million dollar project. If a kWh is 25cents, the average monthly power bill for a house is roughly $250, which means in order to see a return on this investment in terms of energy costs these devices would have to work without maintenance for about 294 thousand years. You can gain more energy with a larger height difference, so if you used a turbine further downstream, say 100m down, it would generate more energy… For 100m it would take 2940 years. This is not factoring in the costs to build and ship these devices, and naturally such devices would probably cost more than a dollar and break down and they would also not recover 100% of the energy (maybe 30% if you’re lucky!)
What does fuck off with every minute possible option that creates energy mean ?
I’m not an engineer and don’t understand how things work. You can create power but it’s like Kinect energy. Maybe the flush of a toilet is more energy than you’d get from a turbine. You’d need to make sure nothing solid blocked the device. Would need to get everything tiny to fit and yeah would be miniscule power.
It’s definitely doable but I think the output would just be lower than turning off a light or something.
I’ve no idea but someone will know.
I think something like a wind turbine in a car would be more useful. Just solar panels on a car would be useful. You might get 5/10 miles extra range. I think that’s more useful than a fraction of a percentage from toilets.
Now rivers/ canals and waterways. That might give you enough power that it’s worth it. Again maintenance would be an issue. Boats fish humans potentially. Maybe the odd shopping trolley and escooters
In some sense this would be recuperating energy rather than generating new energy because we use energy to pump water to your toilet in the first place. So it’s not really a power source on its own (at least in most places), it’s more akin to regenerative braking where you can capture some of the energy you spent before.
If this was something that you were going to do it would not make sense to have small turbines in every toilet. Likely the energy used to manufacture every turbine and ship it would dwarf the energy output.
Not only that but maintenance would be a big concern! Millions of devices with moving parts subject to solid waste would be hard to keep running (and there’s a good chance it would plug your toilet more often). If this were a valuable source of power you would want to do it downstream and use a single larger turbine for harvesting energy from many houses. This would likely be more efficient as the larger turbine would likely have less friction proportionally, and there would only be one point for maintenance.
You can of course collect energy from lots of sources to generate small amounts of electricity but generators are expensive devices to produce and the amount of energy you would get out of these in the device’s lifetime would not offset that initial energy investment! That’s where things get really tricky.
Your initial idea of putting a wind turbine on a car is potentially something that can work, but with an important caveat! You won’t get more energy than you put into the system, and if the wind turbine is generating energy it’s taking it away from the car’s kinetic energy. It would basically be a form of regenerative braking where you would use drag to slow the car down but recuperate some of the kinetic energy from the car for use later. Regenerative braking on an electric car will be more efficient for this because wind turbines can’t capture energy as efficiently as an electric generator directly connected to the spinning axels, and the other factor that’s a huge win for normal regenerative braking in electric vehicles is that you don’t need many additional parts for the car. The wind turbine idea means you have to build a wind turbine, but you know what’s awesome? When you spin an electric motor it becomes an electrical generator instead, so you can just use the electric motor you already have for it!
Also for what it’s worth… The wind turbine for regenerative braking mind not be a thing, but in Formula 1 they have used fly wheels to store kinetic energy instead! So basically instead of spinning a fan, they have a big heavy wheel that they can use the momentum of the car to spin up (while slowing down the car at the same time), and this wheel can later be used to speed up the car again later.
With all of these regenerative systems it’s important to note that you don’t get more energy than you put in. There are losses and due to conservation of energy you’ll never be able to recover more energy.
That said wind power is also a thing and there’s all sorts of cool ways to take advantage of that… Like sail boats, and these cool things!
Why don’t all electric vehicles have wind funnels built into the grill and push that wind to a onboard wind turbine to help charge batteries?
We obey the laws of thermodynamics in this universe
Sorry homer
I imagine the drag would counter any charging.
I’m not an engineer, but, find it difficult to believe it couldn’t be done with at least some benefit.
Engineers don’t find it difficult to believe.
They should try harder.
Net loss of energy and regenerative breaking easier and more efficient to implement.
This is going to sound offensive, but this is why basic physics knowledge is important. Or you’re a troll and the downvotes are deserved, but let’s go uneducated first.
Could we not beat up OP for asking an honest question? I get it, you get it, OP does not.
Only been here a few months, but it’s becoming reddit 2.0 in a hurry.
Downvoting is for trolls and other dishonest posts. Want to make this a popularity contest? Is that what we’re doing here?
So, you make me sound retarded.
Are you saying it’s impossible to engineer vehicles to capture wind power into a turbine to increase battery power?
Sorry, but, you’ll need to explain step by step… Why vehicles can’t be equipped with air capture devices that funnel wind power into a turbine that feeds that battery.
Earth has many “wind farms”.
Why can’t that concept be scaled down to get wind power from a vehicle?
BTW, ELI5… because, obviously I’m too stupid to understand the details.
You can, but the energy gained from the turbine will be less than the extra energy it takes to drive the vehicle now that there is a wind turbine attached.
You proposed it in the grill, but for simplicity let’s put a wind turbine on the roof. To turn the blades, the wind needs to exert a force on them, and for the blades to not fly off the back of the vehicle, the vehicle needs to match that force. So now the vehicle is working harder to move forward.
It may be easier to visualize if you think of the turbine like a parachute. Once the car is up to speed, you release the turbine out of the back attached by a string. It will spin in the wind, and twist the string, but the car will slow down.
You could put this into the grill, or some part of the vehicle and fool yourself that it’s not added force, but cars are designed for wind to go around them, not for wind to push on them. So no matter how you add a turbine, it’s added wind resistance.
I don’t believe that a design can’t be created to provide even the slightest bump in energy gain v. resistance.
If a system gets a bump in energy output vs the energy put into it you end up with a perpetual motion machine. The law of conservation of energy stops that. Add on top of that friction and vibrational losses before converting the kinetic energy to electricity you will end up causing more drag than the amount of energy generated can offset.
Sorry, I still don’t believe a positive effect air capture system can’t be built.
You could give this guy a watch who is actually testing this IRL and wait and see what his conclusions of this experiment will be in his next video.
The same reason they don’t drag an extra wheel behind them with a generator. The extra drag from whatever you use to charge the battery will use more energy than the generator can put back into the battery. It’s a net loss.
Yeah, why not just crank up the Regen breaking to 100% so the battery is always full? Then you’d never have to charge it. Checkmate
Because no process is 100% efficient in the real world. You would lose more energy due to friction than you would gain. This would negatively affect you driving range.
Also I don’t know why everyone is so upset. I had to put some thought into this one and I have a few engineering and physics classes under my belt.
I concur with this. Also why not have something similar. Turbines in sewers and waterways. We have the ability to be 100% powered by electricity. Batteries are our bottleneck
Seriously, why does everything need to be on huge implementation.
Imagine a power turbine just behind every flush of every toilet on Earth?
Why can’t that be a thing?
I would need a legit physics PhD to explain to me why that can’t happen.
I assume it’s cost. You’ll get pica amounts of charge. So it’s not Worth it. When you can just cover every roof with solar. Enough wind turbines, water way turbines, bio plants and geothermal.
We don’t actually need it.
I think that’s the issue
So, you’re saying… Fuck off with every minute possible option that creates energy?
You really think the multi millions of flushed toilets couldn’t produce any relevant energy? Isn’t that a failure of physics and engineering versus humanity?
Average toilet flush is 5 litres which weighs about 5kg. The amount of potential energy depends on the height difference between the source and the turbine. If it’s right in the toilet you maybe have a meter of height, so you could potentially generate 5 kg * 9.81m/s^2 * 1 m = 49 Joules of energy from a single toilet flush. The average house uses about 1000kWH of energy every month, which is 3.6 billion joules. If you could capture the energy with 100% efficiency you would need about 73.5 million toilet flushes to recuperate the amount of energy for one household in a month. If each toilet is used 10 times a day you would need 7.35 million of these devices. If they cost $1 each this would be a $7.35 million dollar project. If a kWh is 25cents, the average monthly power bill for a house is roughly $250, which means in order to see a return on this investment in terms of energy costs these devices would have to work without maintenance for about 294 thousand years. You can gain more energy with a larger height difference, so if you used a turbine further downstream, say 100m down, it would generate more energy… For 100m it would take 2940 years. This is not factoring in the costs to build and ship these devices, and naturally such devices would probably cost more than a dollar and break down and they would also not recover 100% of the energy (maybe 30% if you’re lucky!)
What does fuck off with every minute possible option that creates energy mean ?
I’m not an engineer and don’t understand how things work. You can create power but it’s like Kinect energy. Maybe the flush of a toilet is more energy than you’d get from a turbine. You’d need to make sure nothing solid blocked the device. Would need to get everything tiny to fit and yeah would be miniscule power.
It’s definitely doable but I think the output would just be lower than turning off a light or something.
I’ve no idea but someone will know.
I think something like a wind turbine in a car would be more useful. Just solar panels on a car would be useful. You might get 5/10 miles extra range. I think that’s more useful than a fraction of a percentage from toilets.
Now rivers/ canals and waterways. That might give you enough power that it’s worth it. Again maintenance would be an issue. Boats fish humans potentially. Maybe the odd shopping trolley and escooters
In some sense this would be recuperating energy rather than generating new energy because we use energy to pump water to your toilet in the first place. So it’s not really a power source on its own (at least in most places), it’s more akin to regenerative braking where you can capture some of the energy you spent before.
If this was something that you were going to do it would not make sense to have small turbines in every toilet. Likely the energy used to manufacture every turbine and ship it would dwarf the energy output.
https://what-if.xkcd.com/91/
Not only that but maintenance would be a big concern! Millions of devices with moving parts subject to solid waste would be hard to keep running (and there’s a good chance it would plug your toilet more often). If this were a valuable source of power you would want to do it downstream and use a single larger turbine for harvesting energy from many houses. This would likely be more efficient as the larger turbine would likely have less friction proportionally, and there would only be one point for maintenance.
You can of course collect energy from lots of sources to generate small amounts of electricity but generators are expensive devices to produce and the amount of energy you would get out of these in the device’s lifetime would not offset that initial energy investment! That’s where things get really tricky.
Your initial idea of putting a wind turbine on a car is potentially something that can work, but with an important caveat! You won’t get more energy than you put into the system, and if the wind turbine is generating energy it’s taking it away from the car’s kinetic energy. It would basically be a form of regenerative braking where you would use drag to slow the car down but recuperate some of the kinetic energy from the car for use later. Regenerative braking on an electric car will be more efficient for this because wind turbines can’t capture energy as efficiently as an electric generator directly connected to the spinning axels, and the other factor that’s a huge win for normal regenerative braking in electric vehicles is that you don’t need many additional parts for the car. The wind turbine idea means you have to build a wind turbine, but you know what’s awesome? When you spin an electric motor it becomes an electrical generator instead, so you can just use the electric motor you already have for it!
Also for what it’s worth… The wind turbine for regenerative braking mind not be a thing, but in Formula 1 they have used fly wheels to store kinetic energy instead! So basically instead of spinning a fan, they have a big heavy wheel that they can use the momentum of the car to spin up (while slowing down the car at the same time), and this wheel can later be used to speed up the car again later.
https://en.m.wikipedia.org/wiki/Kinetic_energy_recovery_system
With all of these regenerative systems it’s important to note that you don’t get more energy than you put in. There are losses and due to conservation of energy you’ll never be able to recover more energy.
That said wind power is also a thing and there’s all sorts of cool ways to take advantage of that… Like sail boats, and these cool things!
https://en.m.wikipedia.org/wiki/Rotor_ship
Its because machines are very inefficient in practice. You would lose more energy than you gain.
Maybe you should look into perpetual motion machines and why they don’t work.