48
Probabilistic Consensus through Ensemble Validation: A Framework for LLM Reliability
arxiv.orgLarge Language Models (LLMs) have shown significant advances in text generation but often lack the reliability needed for autonomous deployment in high-stakes domains like healthcare, law, and finance. Existing approaches rely on external knowledge or human oversight, limiting scalability. We introduce a novel framework that repurposes ensemble methods for content validation through model consensus. In tests across 78 complex cases requiring factual accuracy and causal consistency, our framework improved precision from 73.1% to 93.9% with two models (95% CI: 83.5%-97.9%) and to 95.6% with three models (95% CI: 85.2%-98.8%). Statistical analysis indicates strong inter-model agreement ($κ$ > 0.76) while preserving sufficient independence to catch errors through disagreement. We outline a clear pathway to further enhance precision with additional validators and refinements. Although the current approach is constrained by multiple-choice format requirements and processing latency, it offers immediate value for enabling reliable autonomous AI systems in critical applications.
“We just need to drain a couple of lakes more and I promise bro you’ll see the papers.”
I work in the field and I’ve seen tons of programs dedicated to use AI on healthcare and except for data analytics (data science) or computer image, everything ends in a nothing-burger with cheese that someone can put on their website and call the press.
LLMs are not good for decision making (and unless there is a real paradigm shift) they won’t ever be due to their statistical nature.
The biggest pitfall we have right now is that LLMs are super expensive to train and maintain as a service and companies are pushing them hard promising future features that, by most of the research community they won’t ever reach (as they have plateaued): Will we run out of data? Limits of LLM scaling based on human-generated data Large Language Models: a Survey (2024) No “Zero-Shot” Without Exponential Data: Pretraining Concept Frequency Determines Multimodal Model Performance
And for those that don’t want to read papers on a weekend, there was a nice episode of computerphile 'ere: https://youtu.be/dDUC-LqVrPU
</end of rant>